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LEITER TO THE EDITOR 
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Russia 
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Abstract. The multidimensional analogues of the one-dimensional generalized super- 
algebras are considered in the framework of quantum mechanics. 

In [ l ]  the new approach of constructing the various one-dimensional generalizations 
of the one-dimensional supersymmetric quantum mechanics was proposed. The basis 
of our approach is an investigation of a simple model which describes a non-interacting 
N-level system and one hosonic mode. The case of the two-level system leads to 
ordinary supersymmetric quantum mechanics [2] .  In the case of multilevel systems 
( N  2 3)  there exist many possible schemes of configurations of the energy levels. So, 
the schemes of non-degenerate levels correspond to parasupersymmetric quantum 
mechanics [3,4]. But for schemes of degenerate levels one can construct the generalized 
superalgebras differing from the parasuperalgebras. 

In this letter we extend our method in order to obtain multidimensional generdliZCd 
superalgebras. Note that, for ordinary supersymmetric quantum mechanics, there exist 
two approaches of multidimensional extensions (so-called standard [ 5 ]  and the spin-. 
orbit coupling [6-81 procedures). The general feature ofthe standard and the spin-orhit 
coupling procedures is the increase of number of bosonic degrees of freedom, or 
hosonic modes, simultaneously with the increase (although different in each case) of 
fermionic degrees of freedom. In general, these approaches can be utilized for the 
generalized superalgebras including parasuperalgehras. However, as we shall show 
further for the generalized superalgebras based on multilevel systems, another approach 
exists in which multidimensional extensions are realized by an increase of the number 
of bosonic modes only (number of 'discrete' degrees of freedom does not change). 
For this purpose, let us consider a simple system consisted ofthe noninteracting N-level 
system and K hosonic modes. Certainly, we suppose that the frequencies wk of bosonic 
modes are equal to the distances between levels of the N-level system. The Hamiltonian 
of such system has the following form: 

1 "  
H =- wk{bk, b:}+h 

2 k-1  

where operators b: and bk are the ordinary bosonic creation and annihilation operators 
obeying commutation rules: [ b,, b,] = [ b:, b:] = O ;  [b, ,  b:] = 8,. Its infinite-dimensional 
representations are 

As for the matrix h, it has the following form for an N-level system: h,, = e,S.,, 
a, p = 1,. . . , N, and we suppose that the relations E? = ss = w, are satisfied for some 
y, S and i. 
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bx =(2UJk)-"Z(Pr-iWtXk) b;= (2u~k)~l'~(pkf1wkxk). (2) 
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The possibility of multidimensional extension will now be exemplified by  the 
non-interacting three-level system and two bosonic modes of different frequencies. In 
this case the three configurations energy levels are possible (see figure 1) 191. Accord- 
ingly, the matrix elements h,, and frequencies wk of bosonic modes satisfy the 
conditions: E , = E ~ = w , ,  E ~ - E , = W ~  for s-type, E , = E ~ = W ~ , E ~ - E ~ = W ~  for V-type 
and E ~ -  

- 
= ol, E ~ -  E) = w2 for A-type. 

, / 2  0 x 0 , / 2  

a :=( ; )  0 0 0 a := ( ; )  
0 0 0  

I A V - 
I 

Figure I. Possible schemes of configurations of the energy levels in a three-level system 
(case of two bosanic modes of different frequencies). 
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Firstly, consider a three-level system of E-type and two bosonic modes. Note that 
this case is a two-dimensional extension of second-order parasupersymmetric quantum 
mechanics [3,4]. The Hamiltonian has the following form: 

0 bl 0 

0 0 0  
Q : = ( W p O  0 0 Q: = ( w 2 ) ' l 2  

1 2  
H = :  1 wk[bk,b:}+h 

k = l  

0 0 0  

0 0 0  
0 0 b2 . ( 5 )  

(3 )  

where h=diag(e,, E ~ , E J  and E , - E ~ = w , , E ~ - E ~ = u J ~ .  

Since the states l ~ , ) ] n , -  1, n2-  l), ] ~ ~ ) l f l , ,  n 2 -  l), ] ~ ~ ) l n , ,  n2)  have equal energy, the 
operators (generalized supercharge) which are the integrals of motion and have the 
structure Q-oc ab+ and Q'OC afb,  transform the system from one state to another and 
back. The operators a; are the transition operators between levels 1 and 2 and the 
operators a; are the transition operators between levels 2 and 3 of the E-type system. 
For operators a t  and a; we find: 

(4) 

where V=diag(wl+02, -o,+02, - w , - % ) .  



QT=(k)  
0 px-iWdx) 0 112 0 0 0 

0 0 0 Q ; = ( ; )  o o py-iw2(y) (8) 
0 0 0 0 0  0 

, / 2  

Q T = ( i )  
0 px-iWdx) 0 ,/* 0 0 0 

0 0 0 0 p Y - i W h )  0 
0 0 0 Q Z = ( ; )  0 0 0 .  (10) 

+- 1 
2 

w:(x) - WXY) 0 0 

0 -WXx)- WKY) 0 (11) 
0 0 - WKX)+ WXy) 
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Finally, for A-type we obtain the supercharges 

where W:(x) = d W,(x)/dx and W;(y) = d W2(y)/dy. The generalized supercharges 
(13) and the Hamiltonian (14) generate the algebra: 

QT2 = QT’ = [ H, QJ = [ H, Qt ]  = 0 

(Q:Q;+Q:Q;)Q:= Q:H (15) 

(Q:Q;+ QZQijQl= Q:H, 

( i ,  j = 1,2) 

(plus Hermitian conjugated relations). Other triple products of the generalized super- 
charges (13) vanish. 

Our consideration of an example of the two-dimensional (two bosonic modes) 
generalized superalgebras, based on three-level systems, shows that in the framework 
of our approach one can obtain multidimensional generalized superalgebras. The 
multidimensional generalized superalgebras obtained have a structure differing from 
one-dimensional analogues [ 11. In contrast, in the case of multidimensional extensions 
wiiiiiii  B ~iamcwurfi VL s~ariuaiu anu spin-uroii cuupiing proceuurcs ine srmcrure of 
the multidimensional superalgebras remains the same as for the one-dimensional 
superalgebra. The construction of various multidimensional generalized superalgebras, 
based on the non-interacting N-level system with various numbers of bosonic modes 
is also possible. 
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